a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
↳ QTRS
↳ DependencyPairsProof
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
A__PLUS(N, s(M)) → A__PLUS(mark(N), mark(M))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
A__X(N, s(M)) → A__X(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X2)
A__X(N, s(M)) → MARK(M)
A__PLUS(N, s(M)) → MARK(N)
A__AND(tt, X) → MARK(X)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
A__PLUS(N, s(M)) → MARK(M)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__X(N, s(M)) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(and(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__PLUS(N, 0) → MARK(N)
A__X(N, s(M)) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
A__PLUS(N, s(M)) → A__PLUS(mark(N), mark(M))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
A__X(N, s(M)) → A__X(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X2)
A__X(N, s(M)) → MARK(M)
A__PLUS(N, s(M)) → MARK(N)
A__AND(tt, X) → MARK(X)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
A__PLUS(N, s(M)) → MARK(M)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__X(N, s(M)) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(and(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__PLUS(N, 0) → MARK(N)
A__X(N, s(M)) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__PLUS(N, s(M)) → A__PLUS(mark(N), mark(M))
MARK(s(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
A__X(N, s(M)) → A__X(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X2)
A__X(N, s(M)) → MARK(M)
A__PLUS(N, s(M)) → MARK(N)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
A__PLUS(N, s(M)) → MARK(M)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__X(N, s(M)) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, 0) → MARK(N)
A__X(N, s(M)) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
Used ordering: Combined order from the following AFS and order.
A__AND(tt, X) → MARK(X)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
[AX2, x2, ax2] > [plus2, aplus2] > s1 > APLUS2
[AX2, x2, ax2] > 0
[and2, aand2]
ax2: multiset
aplus2: multiset
plus2: multiset
APLUS2: multiset
tt: multiset
aand2: multiset
AX2: multiset
s1: multiset
x2: multiset
and2: multiset
0: multiset
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__plus(N, 0) → mark(N)
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
mark(0) → 0
mark(tt) → tt
a__x(X1, X2) → x(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
mark(s(X)) → s(mark(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__AND(tt, X) → MARK(X)
a__and(tt, X) → mark(X)
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → s(a__plus(mark(N), mark(M)))
a__x(N, 0) → 0
a__x(N, s(M)) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(tt) → tt
mark(0) → 0
mark(s(X)) → s(mark(X))
a__and(X1, X2) → and(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)